21,974 research outputs found

    Radix Conversion for IEEE754-2008 Mixed Radix Floating-Point Arithmetic

    Get PDF
    Conversion between binary and decimal floating-point representations is ubiquitous. Floating-point radix conversion means converting both the exponent and the mantissa. We develop an atomic operation for FP radix conversion with simple straight-line algorithm, suitable for hardware design. Exponent conversion is performed with a small multiplication and a lookup table. It yields the correct result without error. Mantissa conversion uses a few multiplications and a small lookup table that is shared amongst all types of conversions. The accuracy changes by adjusting the computing precision

    Study, selection, and preparation of solid cationic conductors

    Get PDF
    Crystal chemical principles and transport theory have been used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. Structures with 1-, 2-, and 3-dimensional channels were synthesized and screened by nuclear magnetic resonance, dielectric loss, and conductivity. There is significant conductivity at room temperature in some of the materials but none attain a level that is comparable to beta-alumina. Microwave and fast pulse methods were developed to measure conductivity in powders and in small crystals

    SAFT-γ Force Field for the Simulation of Molecular Fluids 6. Binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes

    Get PDF
    AbstractThe SAFT-γ coarse graining methodology (Avendaño et al., 2011) is used to develop force fields for the fluid-phase behaviour of binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes. The effective intermolecular interactions between the coarse grained (CG) segments are directly related to macroscopic thermodynamic properties by means of the SAFT-γ equation of state for molecular segments represented with the Mie (generalised Lennard–Jones) intermolecular potential (Papaioannou et al., 2014). The unlike attractive interactions between the components of the mixtures are represented with a single adjustable parameter, which is shown to be transferable over a wide range of conditions. The SAFT-γ Mie CG force fields are used in molecular-dynamics simulations to predict the challenging (vapour+liquid) and (liquid+liquid) fluid-phase equilibria characterising these mixtures, and to study phenomena that are not accessible directly from the equation of state, such as the interfacial properties. The description of the fluid-phase equilibria and interfacial properties predicted with the SAFT-γ Mie force fields is in excellent agreement with the corresponding experimental data, and of comparable if not superior quality to that reported for the more sophisticated atomistic and united-atom models

    SAFT-γ force field for the simulation of molecular fluids: 8. hetero-group coarse-grained models of perfluoroalkylalkanes assessed with new vapour-liquid interfacial tension data

    Get PDF
    The air-liquid interfacial behaviour of linear perfluoroalkylalkanes (PFAAs) is reported through a combined experimental and computer simulation study. The surface tensions of seven liquid PFAAs (perfluorobutylethane, F4H2; perfluorobutylpentane, F4H5; perfluorobutylhexane, F4H6, perfluorobutyloctane, F4H8; perfluorohexylethane, F6H2; perfluorohexylhexane, F6H6; and perfluorohexyloctane, F6H8) are experimentally determined over a wide temperature range (276 to 350 K). The corresponding surface thermodynamic properties and the critical temperatures of the studied compounds are estimated from the temperature dependence of the surface tension. Experimental density and vapour pressure data are employed to parameterize a generic heteronuclear coarse-grained intermolecular potential of the SAFT- γ family for PFAAs. The resulting force field is used in direct molecular dynamics simulations to predict with quantitative agreement the experimental tensions and to explore the conformations of the molecules in the interfacial region revealing a preferential alignment of the PFAA molecules towards the interface and an enrichment of the perfluoro-groups at the outer interface region

    Chemical analysis and aqueous solution properties of Charged Amphiphilic Block Copolymers PBA-b-PAA synthesized by MADIX

    Full text link
    We have linked the structural and dynamic properties in aqueous solution of amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the physico-chemical characteristics of the samples. Despite product imperfections, the samples self-assemble in melt and aqueous solutions as predicted by monodisperse microphase separation theory. However, the PBA core are abnormally large; the swelling of PBA cores is not due to AA (the Flory parameter chiPBA/PAA, determined at 0.25, means strong segregation), but to h-PBA homopolymers (content determined by Liquid Chromatography at the Point of Exclusion and Adsorption Transition LC-PEAT). Beside the dominant population of micelles detected by scattering experiments, capillary electrophoresis CE analysis permitted detection of two other populations, one of h-PAA, and the other of free PBA-b-PAA chains, that have very short PBA blocks and never self-assemble. Despite the presence of these free unimers, the self-assembly in solution was found out of equilibrium: the aggregation state is history dependant and no unimer exchange between micelles occurs over months (time-evolution SANS). The high PBA/water interfacial tension, measured at 20 mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems are neither at thermal equilibrium nor completely frozen systems: internal fractionation of individual aggregates can occur.Comment: 32 pages, 16 figures and 4 tables submitted to Journal of Interface and Colloidal Scienc
    corecore